
1

Evidence-Based Trust Metrics in Web Services

Hamman W. Samuel

Dept. of Computing Science, University of Alberta, Edmonton, Alberta, Canada

{hwsamuel@cs.ualberta.ca}

Abstract

In a service ecosystem of complementary and

competing web services, clients have many op-

tions but, at the same time, determining which one

to trust can be a challenge. While there have been

several proposals in literature about web services

trust measurement, none has been actually adopt-

ed. Even the notion of trust itself is not clearly

established in the context of the web-services’

stack of standards. In this paper, we propose a

service that collects different types of service-

quality measurements from clients, as well as

evidence in the form of relevant request/response

headers, in order to produce aggregate trust met-

rics of service providers. Our experimental analy-

sis using simulations shows that the proposed

trust-aggregator service framework is feasible and

effective in measuring trust metrics.

1 Introduction and Back-

ground

Consider a traveler looking for an inexpensive

and convenient flight, who discovers an on-line

service that offers an option that appears to meet

his criteria of price, dates and number and length

of intermediate stops. Feeling quite successful,

our traveler may book the ticket only to discover

later that the service is unable to confirm the

booked ticket and has to issue a refund.

It turns out that the selected service, although

it appears to aggregate and compare flights for

Copyright 2013 Hamman W. Samuel. Permission to

copy is hereby granted provided the original copyright

notice is reproduced in copies made.

multiple providers, does so only periodically; the

actual booking process relies on staff, manually

booking flights through the relevant airline offices,

after receiving a client request. Clearly, this un-

derlying process is likely to make this service

appear less trustworthy than a competitor with

real-time data aggregation. More importantly, it

would be desirable to enable clients (users and

organizations alike) to rank (or somehow com-

ment on) the trustworthiness of services, their

processes and data, so that new clients can make

more informed decisions with regard to service

selection in the future.

Considering this scenario within the broad

context of web services and Service-Oriented

Architectures (SOA), we argue that, in an ecosys-

tem that includes a number of alternative services

comparable in terms of functionality and Quality

of Service (QoS) indicators, potential clients may

rely on “trustworthiness” metrics to select among

them. The question then becomes about defining

“trust” and the factors that influence it. There are

many definitions of trust; according to Child [1],

the general consensus is that trust involves an

entity willingly interacting with another, while

holding the belief that the interaction will be at

least self-beneficial, and in the best case mutually

beneficial to all entities involved. While there is

no guarantee that this belief is correct, trust is

essential for interactions to happen. Fundamental-

ly, trust enables action even when given limited or

non-existent knowledge about another (group of)

partner(s). It enables a positive valuation of ac-

tions before the actions are performed, thereby

helping deal with uncertainty about the future or

about the reactions of collaborators.

The research literature in the field of SOA

and web services suggests that the notion of trust

is not clearly understood.

2

Firstly, trust is often confused with security

[2]. Security can be classified as hard and soft

security: “hard security” deals with low-level se-

curitization, such as encryption, while “soft secu-

rity” includes trust. And while security may be a

criterion for characterizing the system as trustwor-

thy, this is only one contextual definition of trust,

namely “identity trust”. “Provision trust”, on the

other hand, refers to the reliability and quality of

services [3]. There have been efforts towards in-

corporating the notion of trust in the context ser-

vice selection. The majority of the existing

literature suggests that clients rate services for

various trust metrics, related to QoS properties.

However, evidence-based methodologies are lack-

ing, and the suggested instrumentation approaches

rely on monitoring.

Also, most implementations have considered

all clients as equally credible, while others have

suggested development of trust models similar to

[4], based on tokens such as security certificates,

as well as bootstrapping for unknown entities. Our

approach takes a cue from research work on be-

havioral trends of clients [5].

The objective of our work is to address some

of these shortcomings by developing a loosely

coupled SOA solution to enable measurement of

provision of trust metrics. Consequently, we pro-

pose a trust-aggregator web service, to which

clients and providers can subscribe, for providing

evidence for, and querying about, trust-reputation

ratings of service providers. The trust-aggregator

service is responsible for combining client evi-

dence and ratings to create trust profiles of service

providers.

To evaluate our proposal, we developed a

simulation through which we aim to demonstrate

the validity of the service ratings, in the presence

of typical behavior as well as in the presence of

Sybil-like attacks, with “bot” clients attempting to

dilute the ratings, by providing misleading ratings

[6, 7]. The properties that we investigate in our

evaluation include the trustworthiness of the client,

the quality of the provider, and the pres-

ence/absence of evidence. The client can be giv-

ing undeservedly good ratings, undeservedly bad

ratings, or deserved ratings; the provider may be

giving a good, bad average, or unstable service;

there may be valid evidence provided by the client,

or invalid evidence, or none provided. There are

various permutations of these three variables pos-

sible.

The rest of the paper is organized as follows.

Section 2 looks at related literature, while Section

3 describes the design of the proposed trust-

aggregator service. In Section 4, evaluation exper-

iments of the proposed system are presented.

2 Related Work

Trust as a computational concept was presented

by Marsh in the context of multi-agent systems

modeling human notions of trust [8]. Since then,

the state-of-the-art in web services trust is sum-

marized here. Resnick and Zeckhauser [5] looked

at a case study of the eBay reputation system,

which is among the earliest web reputation sys-

tems. The study performed analysis of historical

eBay ratings of buyers and sellers, wherein trust

and reputation were seen to be counterparts. Be-

cause eBay is a virtual online marketplace, trust is

very important to facilitate transactions and sales.

Trust in a seller is correlated to their reputation

rankings, and distinctions between trustworthy

and non-trustworthy sellers is based on their repu-

tation, which in turn was built upon ratings given

by clients. Since then, many systems have used

reputation as a means of quantifying trustworthi-

ness.

 Jindal and Liu [7] looked into trustworthiness

of online opinions. They identified the issue of

review spam, which arises because anyone online

can post comments and reviews about products

and services. While these reviews are actually

meant to help potential customers, spam re-

views/opinions are a common occurrence where-

by users or automated systems post many

misleading or biased reviews. They identified

three categories of spam reviews, Type 1 (untruth-

ful opinions), Type 2 (reviews on brands only),

and Type 3 (non-reviews). Jindal and Liu con-

cluded that Type 1 reviews are difficult to identify.

They also looked into the effects of duplicate and

outlier reviews on the overall product perception.

 Next, Kovač and Denis set up a theoretical

framework to model trust in service-oriented envi-

ronments, which supersede web services [9]. Ar-

chitecturally, they propose incorporating a trust

engine external to the service broker. They also

provide formalizations on computing trust as so-

cial interactions among agents. Trust is modeled

in terms of trust relations between agents, where

agents provide a trust degree as an opinion about

the relations, where the opinion is based on a set

of trust values within the trust domain.

3

 This leads to a trust matrix of all interactions

between agents on which trust operations can be

performed. The two fundamental operators identi-

fied are Insert and Query. We make use of an

implementation of the two operators for our trust-

aggregator service. A similar approach was pro-

posed by Lin et al. [10] in the context of supply-

chain performance. In order to facilitate better

selection of suppliers, Lin et al. demonstrated a

trust-measuring simulation. An important contri-

bution of their work was the formulation of a re-

search framework for mathematically defining

ability, benevolence, and integrity. Our proposed

approach also looks at various aspects of trust-

worthiness related to clients and providers, in

terms of algorithms that can better predict trust-

worthiness and incorporate evidence.

 Malik and Bouguettaya presented the

RATEWeb framework in 2009 with the promise

of creating trust within service-oriented systems

[11]. They approach trust via client ratings, which

are aggregated to determine a provider’s reputa-

tion, and in turn, trust. In their model, clients and

providers interact in a peer-to-peer manner, with-

out the need for any central trust verification au-

thority. In our approach, we separate functional

concerns of clients and providers from verifica-

tion of trust. Instead of having client/provider

track trustworthiness, our proposed approach del-

egates this responsibility to an independent third-

party service, and the client only needs to provide

rating-based feedback, which leads to a more

practical and less tightly coupled architecture.

They incorporate client/rater credibility into the

calculation of reputation. Our approach extends

the notion of client weight by also incorporating

karma, i.e. penalty or reward based on the diversi-

ty of client ratings. They use k-means clustering

to compute the majority opinion among clients.

We extend the approach by incorporating the

number of ratings the provider receives. Conse-

quently, our approach considers the quantity,

quality and diversity of ratings. It is also notewor-

thy that Malik and Bouguettaya use the notion of

communities for grouping ratings, and identifica-

tion of providers with communities is compulsory.

Our approach is less stringent, and our algorithm

can be extended to query the service repository

for finding categories that would assist in ranking

providers within categories, or without. Ultimate-

ly, our approach provides absolute ratings in

terms of aggregated ratings, and in addition gives

relative ratings via our provider ranking algorithm.

 More recently, Aljazzaf [3] complemented

and surveyed and synthesized various previous

studies in the literature on trust, services selection

and discovery, in her work on trust-based service

selection. An important contribution of the study

was the distinction between security, privacy and

trust, which are sometimes used interchangeably

in the literature. For instance, in the WS-Security

and WS-Trust standards, Certification Authorities

(CA) can provide identity trust, but service re-

questers might also be interested in metrics for

provision trust. WS-Trust can verify that the ser-

vice provider is who they say they are, but cannot

tell whether this service provider is good or bad.

In order to handle various shortcomings with ex-

isting specifications and frameworks, Aljazzaf

proposed the Trust Mediator trust framework,

added to the SOA broker as a service. The Trust

Mediator provides a ratings repository that stores

QoS trust metrics.

 We extend the notion of ratings to evidence-

based ratings, and also look into reputation com-

putation via clustering to provide a representative

rating. Furthermore, part of the Trust Mediator’s

job is to monitor QoS values claimed by the pro-

vider. In contrast, our proposal puts the onus on

the provider to satisfy the client requirements in-

stead of claims of trustworthiness. Also, we sepa-

rate the functional requirements of the service

broker to discover web services from our trust-

aggregator service. The bulk of the work of the

trust-aggregator service is in reasoning about the

trust ratings provided by clients and finding the

best representation of the ratings to assist in trust

decisions.

 Finally, it is worth noting that, in the most

recent SOA implementations, there is tight cou-

pling of low-level security mechanisms such as

the Public Key Infrastructure (PKI) systems with

business functions, and SOA systems are usually

secured at end-points, leading to hard-coded secu-

rity functions [12, 13]. To address this issue, vari-

ous studies have suggested extending the SOA

architecture to incorporate an independent trust

web service, which is the approach we adopt in

our work also.

3 The Trust Service

We present the detailed design and inner work-

ings of the trust-aggregator service. Figure 1

shows the service architecture and interactions

needed for rating submissions.

4

Figure 1. High-level Architecture and Interactions

of Trust-Aggregator Service

 In the architecture, clients send ratings to the

trust-aggregator service. Evidence is polled and

sent as headers when the client engages a provider.

Related evidence and ratings are analyzed togeth-

er by using heuristics, leading to an assessment of

Weight of Evidence (WoE). Both client and pro-

vider can query existing ratings; the clients are

likely to be interested in adopting a service where

the providers are interested in their own trust rep-

utation.

3.1 Rating Trust Metrics

A trust metric is a measurable quantification of

how much one entity trusts another [14]. We fo-

cus on the following four trust metrics as repre-

sentatives of subjective and objective QoS ratings.

It is important to distinguish that QoS metrics

give an empirical measurement of quality, while

trust metrics give a valuation of the truthfulness of

these QoS values.

 Correctness/accuracy (c): How accurate were

the results returned?

 Availability (a): How responsive was the

server when requested?

 Timeliness (t): How quickly were the results

delivered?

 Satisfaction (s): How satisfied was the client

overall?

 The first three ratings, c, a, t, are objective

performance metrics and we use a five-point Lik-

ert scale [1 … 5] as the rating mechanism. The

client’s rating R for a provider can be represented

as a tuple ([c, ec], [a, ea], [t, et]), where e* repre-

sents the evidence supporting each quality rating.

We also include an additional subjective rating,

namely satisfaction, s, as a proxy for the utility

that the client perceives through the use of the

service, likely dependent on the other three per-

formance metrics. Clients may query the satisfac-

tion rating for a provider by supplying weights per

performance rating, or looking at various scenario

profiles, in similar fashion to the hypothetical

equivalents-inequivalents method suggested by

[15]. Generally, we are using the two-operator

Insert and Query approach by Kovač and Denis,

ratings are submitted (i.e. insertion), and ratings

are retrieved (i.e. querying) [9].

3.2 Interaction Sequence Dia-

gram
To better illustrate the overall scenario, Figure 2

depicts the sequence of operations. As part of the

agreement for subscribing to the trust-aggregator

service, when a client invokes the provider’s ser-

vice, the request and response headers are for-

warded to the trust-aggregator service via a

polling mechanism. Polling essentially takes the

headers from the client-provider transaction and

sends them to the trust-aggregator service. It

keeps these headers in its repository to be used as

evidence in support of the aggregate ratings.

Clearly not all headers have to be sent to the

trust-aggregator service as this would fundamen-

tally undermine the scalability of the system. A

combination of random sampling of which head-

ers to store and forgetting old headers could be

used to manage the overall number of headers

stored as evidence by the aggregator.

3.3 Evidence
The trust-aggregator service receives request and

response headers as trust-related evidence, sub-

mitted by the client along with ratings. These re-

quest and response headers are the result of the

interactions between the client and provider. Be-

cause our aim is to develop a loosely coupled so-

lution, the trust-aggregator service is not an

intermediary between the client and service pro-

vider.

5

Figure 2. Trust-Aggregator Service Sequence

Consequently, the headers must be relayed to

the trust-aggregator service, after the client-

provider transaction has been completed. To that

end, we propose a polling API that must be im-

plemented by the clients who wish to participate

to the trust-aggregator service to allow it to collect

all request and response headers of the client. The

implementation of the polling mechanism in-

volves (a) the collection of request/response head-

ers and (b) operations to selectively submit these

headers to the trust-aggregator service upon re-

quest. The first functionality is likely to rely on

message handlers, which typically sit between the

port where the middleware listens and the recipi-

ent class. Handlers can inspect, process and rec-

ord messages between the client and provider, and

map them in pairs so that they can be used as evi-

dence. Later on, when the client is submitting a

rating for a provider, the relevant request and re-

sponse headers related to the client and provider

can be selected by the client from the trust-

aggregator service’s repository.

3.3.1 Server- and client-side polling

There are generally two places where message

handlers can be placed: (a) provider-side, (b) cli-

ent-side.

 In the first scenario, the provider would have

to use our polling API so that any incoming re-

quests and outgoing responses can be monitored

and the relevant headers extracted. In the second

scenario, the client would need to use our polling

API so that all requests to the provider and re-

sponses from the provider are routed through our

message handler. Our proposal is to use a client-

side polling mechanism to enhance the chances of

adoption of the trust-aggregator service because

providers may not be willing to have monitors

installed on their servers.

 In the context of WS-* services, a server-side

polling mechanism can be implemented as a han-

dler in Apache Axis2, for instance, or other simi-

lar Simple Object Access Protocol (SOAP) API

for clients [16]. Programming models that provide

application handlers enable the client to manipu-

late an inbound or outbound message. Handlers

such as those provided by Apache Axis2 can be

added to the runtime for performing additional

tasks on request and response messages, such as

logging. The handler can intercept messages and

perform automated tasks, and it can also forward

the response and request messages onward (i.e.

polling) to the trust-aggregator service.

 There is no similar standard mechanism for

RESTful services, but a possible solution would

be to parse server logs and extract headers; alter-

natively clients of RESTful service could imple-

ment standard APIs to submit this meta-level

information about their interactions with the ser-

vices. For demonstration purposes, in our simula-

tion, web-browser extensions are used to

implement client-side polling mechanism. Brows-

er extensions expand the functionality of a web

browser, and can monitor inbound and outbound

traffic, as well as perform seamless actions on

requests and responses being exchanged. Exten-

sions can act as an intermediary between client

and provider.

3.3.2 Header properties

The trust-aggregator service presents to the client

the set of relevant polled headers, and the client

can select the appropriate one as potential evi-

dence of the transaction for which the rating is

being given. Once the client chooses their poten-

tial evidence, the trust-aggregator service can then

extract relevant properties from the headers as

evidence. The following properties are queried as

potential evidence [17, 18].

 Date: The timestamp for when the message

was sent

 Status: The response status

 Warning: Potential problems with message

body

6

 These properties are used to determine, using

heuristics, if the ratings match the information

about the interaction inferred from the polled

headers, as discussed in Section 3.6.3. The lag

time between a request and response is also noted.

3.4 Ratings Repository

The trust-aggregator service stores all client rat-

ings in a repository, along with identifiers to ser-

vice providers and clients. The repository stores

tuples (cid, pid, R) consisting of the client identi-

fier cid, the provider identifier pid, and the rating

R. The polled headers are also stored in the re-

pository. These tuples are matched against the

polled headers during the evidence analysis step,

as discussed in Section 3.6. The trust-aggregator

service extracts the relevant properties from the

polled headers and saves these to the repository.

The repository model is shown in Figure 3.

Figure 3. Trust-Aggregator Service Repository

Data Model

 Notably missing from the repository are satis-

faction ratings. It should be clarified that satisfac-

tion is not implemented as a rating provided by

the client, but rather as a utility function based on

other ratings, so there is no need to store it in the

repository.

3.5 Service Interface

The trust-aggregator service exposes the follow-

ing methods to the client. We chose to describe it

as a RESTful service for reasons of simplicity in

the development of the simulation, but it could

equally be developed in the WS* style.

 setRequestHeader(cid,pid,reqhead)

 setResponseHeader(cid,pid,resphead)

 setRating(cid,pid,reqhead,resphead,c,a,t)

 getRating(pid)

 getRating()

 The getRating method without parameter

arguments returns the ratings of all providers with

entries the repository. Retrieving side-by-side

multiple provider ratings helps in comparative

analysis. The methods map to the following POST

methods respectively.

 @POST

/setrequestheader?cid=&pid=&reqhead=

 @POST
/setresponseheader?cid=&pid=&resphead=

 @POST
/setrating?cid=&pid=&reqhead=&resphead

=&c=&a=&t=

 @GET /getrating?pid=

 @GET /getrating

 The aggregation algorithms are invoked in

sequence via the getRating, as discussed in Sec-

tion 3.7. The evidence analysis algorithms are

invoked with setRating, as outlined in the follow-

ing Section 3.6. The evidence analysis steps are

presented first.

3.6 Evidence Analysis

The evidence-analysis process involves three

steps: (a) header polling, (b) property mapping,

and (c) heuristic rating validation. Polled request

and response headers are parsed to extract proper-

ties that can be useful as evidence for the ratings,

as discussed in Section 3.6.1. Once header proper-

ties have been extracted, they can be presented to

the client as possible evidence. Also, ratings can

be validated via heuristics, as discussed in Section

3.6.3, while evidence as properties can be aggre-

gated to create provider profiles. Moreover, evi-

dence analysis and inference can lead to data

mining scenarios.

3.6.1 Header Polling

On SOAP-based clients, handlers can perform the

required polling mechanism to automatically for-

ward the headers a client gets from any provider

they interact with. These are all saved in the trust-

aggregator service’s repository to be looked up

later as possible evidence. For the purpose of

demonstrating our RESTful-based service, we use

a web browser and an extension. The polling

mechanism would require installation of the ex-

tension that can monitor and forward headers.

7

3.6.2 Property Mapping

The property-mapping step transforms request-

response headers to quality-based trust metrics.

The mapping of properties to ratings is given in

Figure 4. Correctness is related to warning and

status codes because certain codes exclude the

possibility that the request was completed suc-

cessfully. For instance, a status code between 400

and 600 implies that an internal client or server

error was encountered while attempting to service

the request, thus the response could not have been

correct [17, 18]. Availability is related to response

status codes, since certain status codes above 500

can give an indication of whether the server was

up or not [17, 18]. Also, timeliness is related to

the time elapsed between the request being sent

and the response being received. Also, the ra-

tionale for these mappings is further explained

using examples in the proceeding Section 3.6.3.

Figure 4. Header Properties as Rating Evidence

3.6.3 Rating Validation Heuristics

The header properties can be analyzed against the

client rating via heuristics to validate the rating.

For instance, a low rating on a (availability) might

imply a response Status code other than 200.

 Similarly, a high rating for t (timeliness) im-

plies that the time elapsed between the request

and response is short, which can be inferred by

inspecting the Date properties of request and re-

sponse headers. Based on these heuristics, a

Weight of Evidence, WoE = [0.1, 1] can be incor-

porated with the rating, i.e. c = woe × c, a = woe ×

a, t = woe × t, when the rating is deemed trustwor-

thy, WoE = 1, and no dilution of ratings occurs. If

the rating is suspicious based on the evidence,

then it is diluted and its value reduced.

 Simply put, dilution implies that the WoE < 1,

and the value for WoE is adjusted depending on

the scenario. As an example, suppose the response

time is greater than 1 day and the rating is greater

than 3. A simple heuristic would be to set WoE =

0.5 for this scenario because the response time is

seemingly slow, but the rating is relatively high.

3.7 Ratings Congregation
The ratings-congregation process follows the evi-

dence analysis and is responsible for the ratings

composition through the following steps: (a) rat-

ing normalization; (b) client ranking (karma); (c)

rating factoring; and (d) rating aggregation. After

a /getrating query is issued, all ratings for the

specified provider are retrieved and a rating selec-

tion algorithm is applied to validate and prune

client ratings.

3.7.1 Rating Normalization

This algorithm is invoked whenever ratings are

requested. First, two weights are incorporated in

the ratings: temporal damping factor and Weight

of Evidence (WoE). Temporal damping can also

be referred to as the decay of the rating variable,

and naturally occurs because older ratings should

have lower weight in the overall assessment about

a provider’s trustworthiness. Services (their im-

plementation details and deployment configura-

tions) evolve and older ratings are obviously

unaware if these changes.

 We use a threshold, τ that determines ‘how

old is old’. If the difference in the present date

and the rating’s date exceeds τ then it is damp-

ened by a numerical factor, tdf = [0.1, 1]. A sim-

ple heuristic could be setting τ to 3 months and

any rating that is older than that would get scaled

down by a factor of 0.1 for each month-age. Simi-

larly, the evidence heuristics can provide a value

for WoE as explained previously.

3.7.2 Client Ranking (Karma)

For each rating, a “karma” is assigned to the client.

Karma, in this context, is conceived as a penalty

or a reward given to the client, based on their

‘deeds’, i.e., their ratings to providers. Karma is

implemented as a multiplier weight, wcid, based on

the client, i.e. c = c × wcid, a = a × wcid, t = t × wcid.

8

 This weight serves as a meta-trust metric.

Clients who give more ratings have a higher

weight, because more is known about them than

about clients that give very few ratings.

 We also factor in the distribution of the rat-

ings by having standard deviation of the client’s

rating. Suppose for client cid, the total number of

ratings is ncid, while the total number of ratings for

all clients in the trust-aggregator service’s reposi-

tory is Tc. Also, let stdcid be the standard deviation

of the ratings by client cid. Then

wcid = [(α × (ncid/Tc)) + (β × stdcid)] / (α +

(maxsd × β))

where maxsd = 2, and α, β determine the relative

importance of the number of client ratings or the

distribution of ratings. The intuition behind this

formula is that a client who is more active in giv-

ing ratings is more known, hitherto more trust-

worthy, than another client who is less active.

Also, a client who consistently gives similar rat-

ings to different providers could be seen as less

trustworthy than a client who gives more diversi-

fied ratings.

 Consequently, the activity of the client is

rewarded or punished as karma. The next step is

to apply the rating aggregation algorithm. It

should be noted that maxsd needs to be set to 2 to

normalize the value of wcid so that its range is al-

ways [0, 1], given that max(ncid/Tc) = 1 and

max(stdcid) = 2 [19].

3.7.3 Rating Factoring

When a client has provided multiple ratings for

the same provider, these ratings are averaged, so

that only one representative rating per client is

used in the provider profiling. Also, the client-

provided evidence is checked: in the case that a

client has not provided evidence for a rating, that

rating is discarded.

3.7.4 Rating Aggregation

The purpose of the algorithm is to calculate an

overall satisfaction rating, based on the c, a, and t

ratings. The rating-aggregation algorithm works

as follows. First, a representative value for each of

the trust metrics is computed as the median of

values from the previous step. This steps elimi-

nates outlier ratings that may be too high or too

low, and therefore not representative.

 Next, the satisfaction-rating profiler algo-

rithm is applied, to compute the satisfaction rating

as a utility function. Different weights, w*
si are

assigned to c, a, t and the results averaged, i.e. s =

(wcs1 × c + was1 × a + wts1 × t)/(wcs1 + was1 + wts1).

For each variation of the weights, a different pro-

file, si of satisfaction is created. We explore the

following multipliers for s profiles, listed in Table

1. The actual selection of which profile is more

suitable is subjective and depends on the prefer-

ence. For instance, if a client thinks availability is

very important, then S5, S8 and S11 would be

pertinent.

Profile c a t

S1 1.00 0.50 1.00

S2 0.50 1.00 1.00

S3 1.00 1.00 0.50

S4 0.50 0.50 1.00

S5 0.50 1.00 0.50

S6 1.00 0.50 0.50

S7 0.25 0.50 1.00

S8 0.25 1.00 0.50

S9 0.50 0.25 1.00

S10 1.00 0.25 0.50

S11 0.50 1.00 0.25

S12 1.00 0.50 0.25

S13 1.00 1.00 1.00

Table 1: Multipliers for Satisfaction (s) Profiles

 As noted earlier, the concept of the profiler is

based on the work by Srivastava and Sorenson

[15], the weights shown in Table 1 are configured

for diversity in options. The different weights

allow different aspects of the ratings to be high-

lighted, such as correctness, availability, or time-

liness.

3.8 Additional Potential Fea-

tures
The trust-aggregator service could be enhanced

with a number of additional features.

3.8.1 Provider Profiles

The extracted header properties can also be ag-

gregated to create profiles of providers. For in-

stance, a provider’s average response time, typical

status response, and common response warnings

can be determined from the header submissions.

9

3.8.2 Inference

The trust-aggregator service could also reason

about the meaning of ratings via data mining

methods, such as association rule mining. For

instance, an empirical understanding of slowness

can be determined from looking at low t ratings

and comparing the response times involved. Simi-

larly, low c ratings can be associated with some

header or response body properties, to help vali-

date ratings.

3.8.3 Provider Rankings

Clients could also comparatively review ratings

for more than one provider. We assign a weight,

wpid, based on how many ratings a provider gets,

npid, relative to the total number of ratings given to

all providers, Tp. Providers with more ratings have

a higher quantitative weight. Also, we consider

only one rating per client, and in the situation

there are more than one, they are counted once.

To rank the ratings qualitatively, we also incorpo-

rate the aggregated ratings per provider from the

previous rating aggregation algorithm and rank

providers by normalization. The normalization

ranking algorithm works as follows. The aggre-

gated ratings for each metric are summed to give

sumpid. Each provider is then given a normalized

weight, nwpid, using the grand total of all provider

ratings from the previous aggregation algorithm,

Sp, as a fraction nwpid = sumpid/Sp. Then, wpid = ([α

× (npid/Tp)] + [β × nwpid])/(α + β), where α, β ad-

just the importance we can place on the quantity

vs. quality of ratings.

4 Evaluation

We implemented a prototype of the proposed

trust-aggregator service and tested it using a simu-

lation engine. The trust-aggregator service was

implemented using JAX-WS running in Apache

Tomcat web server, while its repository was im-

plemented using SQLite. We also built a simula-

tion engine in Visual Basic.NET that can generate

text of HTTP headers as well as simulate large

amounts of ratings and associate them with ap-

propriate headers.

4.1 Experimental Design
Our experimental design involved the simulation

of a variety of scenarios that explored different

types of (a) client trustworthiness, (b) provider

quality, and (c) the presence/absence of evidence.

The client could be giving undeservedly good

ratings, undeservedly bad ratings, or deserved

ratings. The provider may have given a good, bad

average, or unstable service. Also, there may be

valid evidence provided by the client, or invalid

evidence, or none provided. We explored various

possible combinations of these three types of pa-

rameters.

 In our experiments, we defined pre-

determined characteristics of the providers and the

clients, and evaluated the trust-aggregation algo-

rithm in terms of the validity of the trust metrics it

provides. Essentially, the question we set out to

address was whether or not the trust-aggregation

service would be able to provide useful trust met-

rics which clients could rely on. We also exam-

ined how the algorithm reacts to outlier ratings,

both invalid and valid ones. As an example, sup-

pose a bogus client gave consistently good ratings

to a provider who is bad, the question is to deter-

mine whether other clients could be made aware

of this in terms of this provider’s absolute and

relative rating aggregations. Finally, we investi-

gated the response of the trust-aggregator service

to Sybil attacks, which involve clients or spam-

bots providing misleading ratings [6].

4.2 Simulation Engine
The simulation engine allows configuration of the

nature of HTTP request and response headers

needed. The engine can generate these headers

and save them in the format that the trust-

aggregator service needs. A screenshot of the en-

gine is shown in Figure 5.

Figure 5. Simulation Engine

10

 The engine interface allows the user to input

into the array of textboxes the frequency of each

status code in the final output of headers, as per-

centages of the total occurrences. In addition, the

user can configure different ranges of response

times, total number of headers to generate, total

number of unique clients and providers.

 The number of response codes in each cate-

gory, e.g. 2xx, is determined based on the total

number of headers needed and the percentage of

these codes’ occurrence, as input by the user. For

each response code selected, a random number of

request warning codes are generated, along with a

random response time. The type of warning codes

and duration of response times are based on the

values input by the user. Only those warning

codes and response times that were selected are

used.

 The engine has two functionalities. First, it

can generate the headers to simulate the polling

mechanism. The generated headers have the op-

tion of varying timestamps to simulate temporal

damping, as well as control over the distribution

of HTTP Status codes that are generated. Based

on the number of headers that are required, a ran-

dom Warning status code and a random Date are

assigned based on the configuration of the re-

sponse ranges option. All the selections follow a

Normalized distribution with a pre-configured

mean and standard deviation.

 The normal distribution provides a better

simulation of real-world scenarios where the

overall ecosystem of web services has an average

positive rating. It should be noted that in a real-

world system, these codes and values would be

extracted from raw HTTP headers via parsing in

the evidence analysis stage, and then saved to the

repository. Second, the engine can simulate rat-

ings by multiple clients to various providers. Rat-

ings for c, a, t are randomly generated but again

follow a Normal distribution, as shown using a

sample simulation in Figure 6.

 The simulator also generates multiple ratings

by the same client for each provider. A sample

distribution for providers is shown in Figure 7,

where providers are given unique ratings per cli-

ent as well as multiple ratings from the same cli-

ents. The degree to which a client is more likely

to give multiple ratings to the same provider is

based on a randomized provider bias value.

Figure 6. Ratings Distribution

 For each rating, a header is assigned as evi-

dence. Furthermore, in order to simulate Sybil-

like attacks, each client is assigned a randomized

threat-level value based on which the client’s rat-

ings are adjusted to either match or mismatch the

evidence. For instance, a client considered as a

high-threat level giving a good rating would im-

ply assigning weak evidence to these ratings. This

scenario simulates the phenomenon where a mali-

cious client assigns weak ratings even though the

actual experience with the service is satisfactory.

The trust-aggregator requires clients to substanti-

ate their ratings with evidence, which makes this

service more robust to unfair, malicious ratings.

Figure 7. Provider Ratings Distribution

 A sample distribution of threat levels is given

in Figure 8 for a sub-section of 15 clients, with

four classifications of threat, depicted by the hori-

zontal, from top to bottom: severe, high, medium,

low.

11

 It should be noted that these levels are classi-

fications of data generated by the simulation en-

gine, and not implicitly known by the aggregation

algorithms.

Figure 8. Threat Level Distribution

 Once the simulation engine generates the

required data, it can be plugged into the trust-

aggregator service to query rating aggregations.

The simulation engine essentially replaces the

setRequestHeader, setResponseHeader, setRating

methods so that large amounts of data can be fed

into the trust-aggregator service. Ultimately, our

experimental analysis involves testing the getRat-

ing method, which is the core of the trust-

aggregator service. It should be noted that the

algorithms for evidence analysis can be run when

a rating is first submitted, or when it is being que-

ried. For demonstration purposes, we compute

WoE on the fly when ratings are queried.

4.3 Header Polling Browser Ex-

tension
For the polling mechanism demonstration, we

implemented a proof-of-concept Google Chrome

extension that allows the relaying of headers to

the trust-aggregation service. The Chrome Exten-

sions API exposes various aspects of the browser

via JavaScript and AJAX. Generally, RESTful

services are invoked programmatically by appli-

cations that form the HTTP requests and parse the

XML/JSON responses. The same action is possi-

ble with a browser because JavaScript-based

technologies make invocation of REST services

from browsers possible.

 The headers for the currently loaded page are

retrieved and forwarded to the trust-aggregator

web service via XMLHttpRequest.

4.4 Findings
We look at the response of the trust-aggregator

web service to Sybil-like attacks, which generally

involve clients diluting the ratings of the commu-

nity by providing bogus ratings. In our simula-

tions, various client were given different degrees

of threat level, which equate to the likelihood of

the clients carrying out a Sybil-like attack. For

instance, a client can be giving undeservedly good

ratings, undeservedly bad ratings, or deserved

ratings; the provider may be giving a good, bad

average, or unstable service; there may be valid

evidence provided by the client, or invalid evi-

dence, or none provided. We configure three sce-

narios labeled as Scenario A, Scenario B, and

Scenario C. Scenarios B and C approximately

correspond to the Type 1 opinion spam category

as defined by Jindal and Liu [7].

4.4.1 Scenario A: Temporal damping

In this scenario, we examine the effect of tem-

poral damping. The trust-aggregator service

should adjust ratings with older timestamps, in

comparison to newer ratings. Figure 9 shows ag-

gregate ratings for one of the metrics, with vary-

ing timestamps, for a given providers. After a

while, the overall rating for the provider starts

falling from just above 2 eventually to about 1.5,

even though no new ratings are being given, as

can be seen from the number of clients giving

ratings.

Figure 9. Temporal Damping

12

4.4.2 Scenario B: Single-provider at-

tack

In this scenario, we examine the behavior of the

trust-aggregation service when a client targets a

single provider and gives it bogus ratings. These

ratings can be overly positive or negative. This

scenario, which we characterize as a single pro-

vider attack, implies that a client is purposefully

trying to boost or bring down a provider’s reputa-

tion. Figure 10 shows that the trust-aggregator

service is able to mitigate against such attacks. In

the area of interest between 125 and 220, the

number of ratings is increasing but the aggregate

rating of the provider stays stable. The increase in

ratings is caused by the same client, and it is be-

ing balanced out with the factoring algorithm.

Figure 10. Single Provider Attack

4.4.3 Scenario C: Flooding attack

In this scenario, we examine the case of a client

giving the same ratings to multiple providers.

Again, these could be negative or positive ratings.

Figure 11 shows the result of a client flooding

three providers with automated ratings. In the

marked area between 140 and 220, the numbers of

ratings are increasing because of the Sybil attack

of a client. However, the corresponding aggregat-

ed ratings per provider is not changing. This is

because the client ranking algorithm step takes

into account the standard deviation of a client’s

ratings. With the proper configuration of β, the

algorithm can deal with Sybil flooding.

Figure 11. Multi-Provider Flooding Attack

4.5 Discussion
The simulation results show that the proposed

trust aggregation can handle Sybil-like attacks,

which includes client bias towards a single pro-

vider, or flooding all providers with bogus data. In

addition to the anti-attack mechanisms, the trust-

aggregator service can provide a good mechanism

for measuring and aggregating trust metrics to

present a client with information to make an in-

formed choice. However, it is noted that the simu-

lations require tweaking and proper configuration

of various control variables within the algorithms,

such as α, β. Nevertheless, we believe that the

strength of the trust-aggregator service is in the

simplicity of the evidence polling and RESTful

ratings submission protocols.

 Providers may have some concerns in adopt-

ing our proposed service because of possible per-

formance impacts. We note that with server-side

polling, the client would not experience any lags

because of the trust-aggregator service, because

polling would be happening asynchronously, in-

dependent of the services by the provider. With

client-side polling, there might be performance

impacts for the client, depending on their system,

network, or browser specifications.

13

5 Conclusions and Future

Work

Related literature suggests that the notion of trust

is not clearly understood within web services.

Although there have been efforts at incorporating

trust in the context of web-services selection,

there is no agreement on how exactly trust metrics

should be established and used.

 Our contributions to this research area in-

clude extending trust to evidence-based trust, as

well as providing absolute and relative trust met-

rics of providers based on meta-trust characteris-

tics of clients. Furthermore, we propose evidence

analysis as a way to make inferences about ratings

and provider services. We also conform to the

self-reinforcing notion of trust by incorporating

karma that adjusts client credibility. We also pro-

pose the notion of Weight of Evidence (WoE)

from heuristic analysis of evidence. We created a

loosely coupled trust-aggregator service prototype

that enables measurement of provision trust met-

rics. Our experimental analysis used various per-

mutations of ratings from clients and providers of

varied quality and trustworthiness.

 An important lesson learnt from this study is

that while there are many good ideas in the litera-

ture about measuring web services trust, actual

adoption of these proposals is not prevalent. Our

empirical results show that the proposed trust-

aggregator service framework is feasible and ef-

fective in measuring trust metrics. Our proposed

evidence-collection polling strategies are also

workable. Our contributions included extending

trust to evidence-based trust. Moreover, we incor-

porate the state-of-the-art concepts from literature

within this area of research.

 For future work, a comparative ranking of

providers can be retrieved with the inclusion of

categories, so that like-providers are compared

using the provider ranking algorithm proposed

here. To further improve rankings, we plan to

extend the trust-aggregator service to incorporate

provider categories from the service broker.

Moreover, using the proposed provider profiles

feature, we plan to incorporate inference and trust

bootstrapping via data mining to reason about the

evidence and ratings and make inferences about

the computational meaning of concepts such as

slow service, bad service, and dissatisfaction.

Acknowledgements

The author would like to thank Dr. Eleni Stroulia

and Dr. Osmar R. Zaïane for their insights and

critique on the presentation and formulation of

this research work. Dr. Stroulia is the Industrial

Research Chair on Service Systems Management

for the Natural Sciences and Engineering Re-

search Council (NSERC)/Informatics Circle of

Research Excellence (iCORE), and professor of

Computing Science at University of Alberta. Dr.

Zaïane is the Scientific Director of the Alberta

Innovates Center for Machine Learning (AICML),

and professor of Computing Science at University

of Alberta. The author is very grateful to the Al-

berta Innovates Center for Machine Learning

(AICML) for funding this research.

About the Author

Hamman Samuel completed his master’s degree

in computing science at the University of Alberta,

Canada, where he is currently a doctoral student

in computing science. He received his bachelor’s

degree in computer science (magna cum laude)

from the American University of Nigeria. Ham-

man is presently serving as webmaster of the

ACM SIGWEB special interest group.

References

[1] J. Child. Trust - The Fundamental Bond

in Global Collaboration. Organizational Dy-

namics, 29(4):274288, 2001.

[2] P. Hallam-Baker, V. M. Hondo, H. Lockhart,

B. R. Martherus, O. H. Maruyama, A. Nada-

lin, I. B. M. Nataraj Nagaratnam, D. Platt,

and D. Waite. Web Services Trust Language

(WS-Trust). 2004.

[3] Z. M. Aljazzaf, Trust-Based Service Selec-

tion. The University of Western Ontario,

2011.

[4] A. Abdul-Rahman. The PGP Trust Model. In

EDI-Forum: the Journal of Electronic Com-

merce, 1997, vol. 10, pp. 27–31.

[5] P. Resnick and R. Zeckhauser. Trust Among

Strangers in Internet Transactions: Empirical

Analysis of eBay’s Reputation System. 2002.

14

[6] Reputation System. Wikipedia. 01-Mar-2013.

[7] Nitin Jindal and Bing Liu. Opinion Spam and

Analysis. In Proceedings of the International

Conference on Web Search and Web Data

Mining, page 219-230, 2008.

[8] S. P. Marsh. Formalising Trust as a Computa-

tional Concept. University of Alberta, 1994.

[9] D. Kovač and D. Trček, Qualitative Trust

Modeling in SOA. Journal of Systems Archi-

tecture, vol. 55, no. 4, pp. 255–263, 2009.

[10] F.-R. Lin, Y.-W. Sung, and Y.-P. Lo. Effects

of Trust Mechanisms on Supply-Chain Per-

formance: A Multi-Agent Simulation Study.

International Journal of Electronic Commerce,

vol. 9, no. 4, pp. 9–112, 2003.

[11] Z. Malik and A. Bouguettaya. RATEWeb:

Reputation Assessment for Trust Establish-

ment among Web services. The VLDB Jour-

nal, vol. 18, no. 4, pp. 885–911, 2009.

[12] L. Boursas, M. Bourimi, W. Hommel, and D.

Kesdogan. Enhancing Trust in SOA Based

Collaborative Environments. Systems and

Virtualization Management Standards and

the Cloud, pp. 94–102, 2010.

[13] F. Moyano, C. Fernandez-Gago, and J. Lopez,

Service-Oriented Trust and Reputation Archi-

tecture. In Doctoral Symposium of the Inter-

national Symposium on Engineering Secure

Software and Systems, 2012, pp. 41–46.

[14] Trust Metric. Wikipedia. 09-Jan-2013.

[15] A. Srivastava and P. G. Sorenson. Service

Selection Based on Customer Rating of Qual-

ity of Service Attributes. 2010, pp. 1–8.

[16] Apache Axis2 - JAX-WS Guide. [Online].

Available:

http://axis.apache.org/axis2/java/core/docs/ja

xws-guide.html#Handlers. [Accessed: 21-

Apr-2013].

[17] List of HTTP Header Fields. Wikipedia. 01-

Apr-2013.

[18] The TCP/IP Guide - HTTP General Headers.

[Online]. Available:

http://www.tcpipguide.com/free/t_HTTPGen

eralHeaders-3.htm. [Accessed: 21-Apr-2013].

[19] M. F. Al-Saleh and A. E. Yousif. Properties

of the Standard Deviation that are Rarely

Mentioned in Classrooms. Austrian Journal

of Statistics, vol. 38, no. 3, pp. 193–202, 2009.

